We investigate the topological properties of the SU(3) pure gauge theory by performing numerical simulations at imaginary values of the θ parameter. By monitoring the dependence of various cumulants of the topological charge distribution on the imaginary part of θ and exploiting analytic continuation, we determine the free energy density up to the sixth order in θ, f(θ,T)=f(0,T)+12χ(T)θ2(1+b2(T)θ2+b4(T)θ4+O(θ6)). That permits us to achieve determinations with improved accuracy, in particular for the higher-order terms, with control over the continuum and the infinite-volume extrapolations. We obtain b2=-0.0216(15) and |b4|4×10-4.
θ Dependence in SU (3) Yang-Mills theory from analytic continuation
BONATI, CLAUDIO;D'ELIA, MASSIMO;
2016-01-01
Abstract
We investigate the topological properties of the SU(3) pure gauge theory by performing numerical simulations at imaginary values of the θ parameter. By monitoring the dependence of various cumulants of the topological charge distribution on the imaginary part of θ and exploiting analytic continuation, we determine the free energy density up to the sixth order in θ, f(θ,T)=f(0,T)+12χ(T)θ2(1+b2(T)θ2+b4(T)θ4+O(θ6)). That permits us to achieve determinations with improved accuracy, in particular for the higher-order terms, with control over the continuum and the infinite-volume extrapolations. We obtain b2=-0.0216(15) and |b4|4×10-4.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.93_thetadep.pdf
accesso aperto
Descrizione: Articolo completo
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
422.68 kB
Formato
Adobe PDF
|
422.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.