For a Riemannian metric g on the two-sphere, let ℓmin(g) be the length of the shortest closed geodesic and ℓmax(g) be the length of the longest simple closed geodesic. We prove that if the curvature of g is positive and sufficiently pinched, then the sharp systolic inequalities ℓmin(g)2≤π Area(S2,g)≤ℓmax(g)2, hold, and each of these two inequalities is an equality if and only if the metric g is Zoll. The first inequality answers positively a conjecture of Babenko and Balacheff. The proof combines arguments from Riemannian and symplectic geometry.

A systolic inequality for geodesic flows on the two-sphere

ABBONDANDOLO, ALBERTO;
2016-01-01

Abstract

For a Riemannian metric g on the two-sphere, let ℓmin(g) be the length of the shortest closed geodesic and ℓmax(g) be the length of the longest simple closed geodesic. We prove that if the curvature of g is positive and sufficiently pinched, then the sharp systolic inequalities ℓmin(g)2≤π Area(S2,g)≤ℓmax(g)2, hold, and each of these two inequalities is an equality if and only if the metric g is Zoll. The first inequality answers positively a conjecture of Babenko and Balacheff. The proof combines arguments from Riemannian and symplectic geometry.
2016
Abbondandolo, Alberto; Bramham, Barney; Hryniewicz, Umberto; Salomão, Pedro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/840496
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact