In this article the transport properties of field-effect transistors based on thin silicon nanowires are studied limiting the computationally demanding atomistic analysis to the determination of a restricted set of parameters which are then used in a less-detailed description of the overall device. In particular, at the beginning of the simulation a tight-binding analysis of a simplified structure is performed, in order to find the main low-level properties of the considered silicon nanowire. These quantities are then passed to another part of the algorithm which, using a continuum, higher-level and thus simpler description, derives the electrical characteristics of the complete nanowire transistor, through the self-consistent solution of the electrostatic and transport equations. I show that this multilevel approach allows to obtain results in very good agreement with fully atomistic simulations, with a considerable time saving.

A fast approach to the simulation of silicon nanowire transistors

MARCONCINI, PAOLO
2013-01-01

Abstract

In this article the transport properties of field-effect transistors based on thin silicon nanowires are studied limiting the computationally demanding atomistic analysis to the determination of a restricted set of parameters which are then used in a less-detailed description of the overall device. In particular, at the beginning of the simulation a tight-binding analysis of a simplified structure is performed, in order to find the main low-level properties of the considered silicon nanowire. These quantities are then passed to another part of the algorithm which, using a continuum, higher-level and thus simpler description, derives the electrical characteristics of the complete nanowire transistor, through the self-consistent solution of the electrostatic and transport equations. I show that this multilevel approach allows to obtain results in very good agreement with fully atomistic simulations, with a considerable time saving.
2013
Marconcini, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/842191
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact