This paper presents a cooperative multiple-input multiple-output (MIMO) scheme for a wireless sensor network consisting of inexpensive nodes, organised in clusters and transmitting data towards sinks. The transmission is affected by hardware imperfections, imperfect synchronisation, data correlation among nodes of the same cluster, channel estimation errors and interference among nodes of different clusters. Within this setting, we are interested in determining the number of nodes per cluster that maximises the energy efficiency of the network. The analysis is conducted in the asymptotic regime in which the number N of sensor nodes per cluster grows large without bound. Numerical results are used to validate the asymptotic analysis in the finite system regime and to investigate different configurations. It turns out that the optimum number of sensor nodes per cluster increases with the inter-cluster interference and with the number of sinks.

On the optimum number of cooperating nodes in interfered cluster-based sensor networks

SANGUINETTI, LUCA;
2016

Abstract

This paper presents a cooperative multiple-input multiple-output (MIMO) scheme for a wireless sensor network consisting of inexpensive nodes, organised in clusters and transmitting data towards sinks. The transmission is affected by hardware imperfections, imperfect synchronisation, data correlation among nodes of the same cluster, channel estimation errors and interference among nodes of different clusters. Within this setting, we are interested in determining the number of nodes per cluster that maximises the energy efficiency of the network. The analysis is conducted in the asymptotic regime in which the number N of sensor nodes per cluster grows large without bound. Numerical results are used to validate the asymptotic analysis in the finite system regime and to investigate different configurations. It turns out that the optimum number of sensor nodes per cluster increases with the inter-cluster interference and with the number of sinks.
9781479966646
9781479966646
File in questo prodotto:
File Dimensione Formato  
ICC16_MSBD.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 214.29 kB
Formato Adobe PDF
214.29 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/843111
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact