In this article, the single-point incremental forming of sheet metals made of micro-alloyed steel and Al alloy is investigated by combining the results of numerical simulation and experimental characterization, performed during the process, as well as on the final product. A finite element model was developed to perform the process simulation, based on an explicit dynamic time integration scheme. The finite element outcomes were validated by comparison with experimental results. In particular, forming forces during the process, as well as the final shape and strain distribution on the finished component, were measured. The obtained results showed the capability of the finite element modelling to predict the material deformation process. This can be considered as a starting point for the reliable definition of the single-point incremental forming process parameters, thus avoiding expensive trial-and-error approaches, based on extensive experimental campaigns, with beneficial effects on production time.

Single-point incremental forming of sheet metals: Experimental study and numerical simulation

MONELLI, BERNARDO DISMA;
2017-01-01

Abstract

In this article, the single-point incremental forming of sheet metals made of micro-alloyed steel and Al alloy is investigated by combining the results of numerical simulation and experimental characterization, performed during the process, as well as on the final product. A finite element model was developed to perform the process simulation, based on an explicit dynamic time integration scheme. The finite element outcomes were validated by comparison with experimental results. In particular, forming forces during the process, as well as the final shape and strain distribution on the finished component, were measured. The obtained results showed the capability of the finite element modelling to predict the material deformation process. This can be considered as a starting point for the reliable definition of the single-point incremental forming process parameters, thus avoiding expensive trial-and-error approaches, based on extensive experimental campaigns, with beneficial effects on production time.
2017
Benedetti, Matteo; Fontanari, Vigilio; Monelli, BERNARDO DISMA; Tassan, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/844879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 17
social impact