A matrix method for the solution of direct fractional Sturm-Liouville problems on bounded domain is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented.

A matrix method for Fractional Sturm-Liouville problems on bounded domain

GHELARDONI, PAOLO;MAGHERINI, CECILIA
2017-01-01

Abstract

A matrix method for the solution of direct fractional Sturm-Liouville problems on bounded domain is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented.
2017
Ghelardoni, Paolo; Magherini, Cecilia
File in questo prodotto:
File Dimensione Formato  
maghe_ghela_offprint.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
maghe_ghela_advances_R2.pdf

Open Access dal 01/01/2019

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 485.55 kB
Formato Adobe PDF
485.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/849041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact