A matrix method for the solution of direct fractional Sturm-Liouville problems on bounded domain is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented.
A matrix method for Fractional Sturm-Liouville problems on bounded domain
GHELARDONI, PAOLO;MAGHERINI, CECILIA
2017-01-01
Abstract
A matrix method for the solution of direct fractional Sturm-Liouville problems on bounded domain is proposed where the fractional derivative is defined in the Riesz sense. The scheme is based on the application of the Galerkin spectral method of orthogonal polynomials. The order of convergence of the eigenvalue approximations with respect to the matrix size is studied. Some numerical examples that confirm the theory and prove the competitiveness of the approach are finally presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
maghe_ghela_offprint.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
maghe_ghela_advances_R2.pdf
Open Access dal 01/01/2019
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
485.55 kB
Formato
Adobe PDF
|
485.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.