Before establishing a communication link with the serving base station (eNodeB), user equipment (UE) operating in a long-term evolution (LTE) multi-cellular network must acquire some specific information, including the sector identity and cell group identity. For this purpose, two training sequences called primary synchronization signal (PSS) and secondary synchronization signal (SSS) are periodically transmitted in the downlink to convey such information. In this work, we present a novel maximum likelihood (ML) approach for SSS detection assuming that the PSS has been successfully identified at an earlier stage. As we shall see, the resulting scheme turns out to be too complex for practical implementation as it requires perfect knowledge of the channel covariance matrix. Therefore, we look for simpler solutions and propose two reduced-search methods that operate in a mismatched mode. The first scheme exploits channel state information emerging from both the primary and secondary synchronization signals, while the second scheme operates using only the secondary synchronization signal. Numerical analysis indicates that the proposed methods outperform existing alternatives and can be successfully applied even in a severe propagation scenario. The price for such an advantage is a certain increase of the processing requirement.
A Maximum Likelihood Approach for SSS Detection in LTE Systems
MORELLI, MICHELE;MORETTI, MARCO
2017-01-01
Abstract
Before establishing a communication link with the serving base station (eNodeB), user equipment (UE) operating in a long-term evolution (LTE) multi-cellular network must acquire some specific information, including the sector identity and cell group identity. For this purpose, two training sequences called primary synchronization signal (PSS) and secondary synchronization signal (SSS) are periodically transmitted in the downlink to convey such information. In this work, we present a novel maximum likelihood (ML) approach for SSS detection assuming that the PSS has been successfully identified at an earlier stage. As we shall see, the resulting scheme turns out to be too complex for practical implementation as it requires perfect knowledge of the channel covariance matrix. Therefore, we look for simpler solutions and propose two reduced-search methods that operate in a mismatched mode. The first scheme exploits channel state information emerging from both the primary and secondary synchronization signals, while the second scheme operates using only the secondary synchronization signal. Numerical analysis indicates that the proposed methods outperform existing alternatives and can be successfully applied even in a severe propagation scenario. The price for such an advantage is a certain increase of the processing requirement.File | Dimensione | Formato | |
---|---|---|---|
Final version.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
245.21 kB
Formato
Adobe PDF
|
245.21 kB | Adobe PDF | Visualizza/Apri |
printedVersion.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.