In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial vehicle recognitions, has provided new opportunities to obtain valuable information for precision farming applications. While available semi-automatic image processing algorithms are now able to detect parcels and extract vine rows from aerial images, the identification of single plant inside the rows is a problem still unaddressed. This study presents a new methodology for the segmentation of vine rows in virtual shapes, each representing a real plant. From the virtual shapes, an extensive set of features is discussed, extracted and coupled to a statistical classifier, to evaluate its performance in missing plant detection within a vineyard parcel. Passing from continuous images to a discrete set of individual plants results in a crucial simplification of the statistical investigation of the problem.

Individual plant definition and missing plant characterization in vineyards from high-resolution UAV imagery

CARUSO, GIOVANNI
Co-primo
;
2017-01-01

Abstract

In the last few years, high-resolution imaging of vineyards, obtained by unmanned aerial vehicle recognitions, has provided new opportunities to obtain valuable information for precision farming applications. While available semi-automatic image processing algorithms are now able to detect parcels and extract vine rows from aerial images, the identification of single plant inside the rows is a problem still unaddressed. This study presents a new methodology for the segmentation of vine rows in virtual shapes, each representing a real plant. From the virtual shapes, an extensive set of features is discussed, extracted and coupled to a statistical classifier, to evaluate its performance in missing plant detection within a vineyard parcel. Passing from continuous images to a discrete set of individual plants results in a crucial simplification of the statistical investigation of the problem.
2017
Primicerio, Jacopo; Caruso, Giovanni; Comba, Lorenzo; Crisci, Alfonso; Gay, Paolo; Guidoni, Silvia; Genesio, Lorenzo; Aimonino, Davide Ricauda; Vaccar...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/851123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 34
social impact