The ideal flow model for the preliminary design and performance prediction of radial turbopumps presented in the companion paper of the present volume (d’Agostino et al., 2017) is here interfaced with the calculation of the boundary layers inside the blade channels and other major forms of flow losses, with the aim of developing an effective tool for rapid parametric optimization of the machine performance and geometry under appropriate design constraints, such as assigned values of the specific speed, flow coefficient and blade solidity. A mixed-flow turbopump, with a six-bladed impeller, a vaneless diffuser, a single-spiral volute and nondimensional performance characteristics similar to those typically used in liquid propellant rocket engine feed systems, has been designed, parametrically optimized and manufactured in accordance with the indications of the present model. The pumping and suction performance of the machine have been determined in a series of tests in the Cavitating Pump Rotordynamic Test Facility (CPRTF). Under fully-wetted flow conditions the measured pumping characteristics of the machine (hydraulic head and efficiency as functions of the flow coefficient) proved to be in excellent agreement with the model predictions, thus successfully confirming the validity of the proposed model as an effective tool for rapid and efficient design of high-performance centrifugal turbopumps.

On the Preliminary Design and Performance Prediction of Centrifugal Turbopumps—Part 2

D'AGOSTINO, LUCA
Primo
Supervision
;
VALENTINI, DARIO;PASINI, ANGELO;PACE, GIOVANNI;
2017-01-01

Abstract

The ideal flow model for the preliminary design and performance prediction of radial turbopumps presented in the companion paper of the present volume (d’Agostino et al., 2017) is here interfaced with the calculation of the boundary layers inside the blade channels and other major forms of flow losses, with the aim of developing an effective tool for rapid parametric optimization of the machine performance and geometry under appropriate design constraints, such as assigned values of the specific speed, flow coefficient and blade solidity. A mixed-flow turbopump, with a six-bladed impeller, a vaneless diffuser, a single-spiral volute and nondimensional performance characteristics similar to those typically used in liquid propellant rocket engine feed systems, has been designed, parametrically optimized and manufactured in accordance with the indications of the present model. The pumping and suction performance of the machine have been determined in a series of tests in the Cavitating Pump Rotordynamic Test Facility (CPRTF). Under fully-wetted flow conditions the measured pumping characteristics of the machine (hydraulic head and efficiency as functions of the flow coefficient) proved to be in excellent agreement with the model predictions, thus successfully confirming the validity of the proposed model as an effective tool for rapid and efficient design of high-performance centrifugal turbopumps.
2017
D'Agostino, Luca; Valentini, Dario; Pasini, Angelo; Torre, Lucio; Pace, Giovanni; Cervone, Angelo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/854813
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact