Fatigue cracking is one of the most important failure mechanisms occurring in asphalt pavements, especially when mixtures incorporate considerable amount of rReclaimed asphalt pavement (RAP). In fact, aged binders contained in RAP generally make asphalt more brittle and specifically reduce fatigue resistance of the resulting asphalt mixtures. Binders and mortars play a key role in this phenomenon, considering fatigue cracking usually starts within these asphalt components. However, performance-related tests and specifications commonly regard binders and there are no sound methodologies allowing the use of mortars to predicting fatigue performance of asphalts containing RAP. For this reason, in this paper, fatigue resistance of extracted binders from high-RAP content mixtures and of RAP mortars (passing sieve with an opening size of 0.15 mm) were assessed and compared. Binders were extracted from asphalt mixtures manufactured with 30%, 60% RAP and rejuvenators. Mixtures recipes were then reproduced to manufacture mortars accordingly. Time sweep tests in stress-controlled mode were carried out on both materials (binders and mortars) and the resulting fatigue laws were compared. As a result, a strict correlation was obtained, leading to affirm fatigue-related properties of RAP mixture could be assessed by directly testing RAP mortars. This makes the recovery of RAP binders unnecessary. Moreover, a relationship between the two fatigue laws versus the percentage of fine particles in the mortar was found. This latter relationship allows determining the fatigue law of mortars corresponding to any percentage of fine particles and therefore corresponding to any percentage of RAP.

Reclaimed asphalt binders and mortars fatigue behaviour

Riccardi, Chiara;LOSA, MASSIMO
2017-01-01

Abstract

Fatigue cracking is one of the most important failure mechanisms occurring in asphalt pavements, especially when mixtures incorporate considerable amount of rReclaimed asphalt pavement (RAP). In fact, aged binders contained in RAP generally make asphalt more brittle and specifically reduce fatigue resistance of the resulting asphalt mixtures. Binders and mortars play a key role in this phenomenon, considering fatigue cracking usually starts within these asphalt components. However, performance-related tests and specifications commonly regard binders and there are no sound methodologies allowing the use of mortars to predicting fatigue performance of asphalts containing RAP. For this reason, in this paper, fatigue resistance of extracted binders from high-RAP content mixtures and of RAP mortars (passing sieve with an opening size of 0.15 mm) were assessed and compared. Binders were extracted from asphalt mixtures manufactured with 30%, 60% RAP and rejuvenators. Mixtures recipes were then reproduced to manufacture mortars accordingly. Time sweep tests in stress-controlled mode were carried out on both materials (binders and mortars) and the resulting fatigue laws were compared. As a result, a strict correlation was obtained, leading to affirm fatigue-related properties of RAP mixture could be assessed by directly testing RAP mortars. This makes the recovery of RAP binders unnecessary. Moreover, a relationship between the two fatigue laws versus the percentage of fine particles in the mortar was found. This latter relationship allows determining the fatigue law of mortars corresponding to any percentage of fine particles and therefore corresponding to any percentage of RAP.
2017
Riccardi, Chiara; Carrion, Ana Jimenez del Barco; Presti, Davide Lo; Losa, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/857564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact