The amount of spent fuel and high-level waste already available, and which will be produced by the future NPPs operation, calls for the evaluation of any possible technological solution that could minimize the burden of their disposal: reduction of Minor Actinide (MA) content, in addition to the radiotoxicity and radioactivity, and of the generated thermal load (decay heat). In this context, R&D efforts currently focus on the development of methodologies and technical solutions for Partitioning and Transmutation. MAs and long-lived fission products are in fact the main contributors to the long-term radiotoxicity of spent nuclear fuel, and their transmutation to short-lived fission products, in fast spectrum nuclear reactors, in transmuters or in Accelerator Driven Systems (ADS), by neutron irradiation of dedicated fuels/targets, is a promising and widely investigated option. In order to provide substantial input for the safety assessment of innovative nuclear fuels dedicated to MA transmutation, several irradiation tests are being carried out. In some options, the investigated fuels/targets are uranium free, or of low uranium content, to improve the transmutation performance and contain high concentrations of MA and plutonium compounds. Two molybdenum based CER-MET fuels, called ITU-5 & ITU-6, were prepared at JRC Karlsruhe for the irradiation experiment FUTURIX-FTA (FUel for Transmutation of transURanium elements in phenIX/Fortes Teneurs en Actinide). The experiment performed from 2007 to 2009 in the Phénix reactor, France, in cooperation with CEA. The experiment ended after 235 equivalent full power days (EFPD) at a Linear Heat Rate of circa 130 W/cm and reached burn-ups of 18 %FIHMA and 13 %FIHMA, respectively. Afterwards, the pins were transported to the Hot Cells of JRC Karlsruhe for Post Irradiation Examination. After a short summary describing the fuel preparation and irradiation conditions of the FUTURIX FTA irradiation experiment, the paper will give an overview on the current status and further planning of the Post Irradiation Examinations of ITU-5 & ITU-6 at JRC Karlsruhe. Finally, the results of the characterisations will be discussed and conclusions on the irradiation performance will be drawn. The results of this experiment will help to increase the knowledge and understanding of the irradiation behaviour of metal based transmutation targets and the qualification and validation of models developed to predict fuel safety performance.

CHARACTERIZATION OF FUTURIX-FTA IRRADIATED NUCLEAR FUEL SAMPLES

LO FRANO, ROSA
Writing – Review & Editing
;
2017-01-01

Abstract

The amount of spent fuel and high-level waste already available, and which will be produced by the future NPPs operation, calls for the evaluation of any possible technological solution that could minimize the burden of their disposal: reduction of Minor Actinide (MA) content, in addition to the radiotoxicity and radioactivity, and of the generated thermal load (decay heat). In this context, R&D efforts currently focus on the development of methodologies and technical solutions for Partitioning and Transmutation. MAs and long-lived fission products are in fact the main contributors to the long-term radiotoxicity of spent nuclear fuel, and their transmutation to short-lived fission products, in fast spectrum nuclear reactors, in transmuters or in Accelerator Driven Systems (ADS), by neutron irradiation of dedicated fuels/targets, is a promising and widely investigated option. In order to provide substantial input for the safety assessment of innovative nuclear fuels dedicated to MA transmutation, several irradiation tests are being carried out. In some options, the investigated fuels/targets are uranium free, or of low uranium content, to improve the transmutation performance and contain high concentrations of MA and plutonium compounds. Two molybdenum based CER-MET fuels, called ITU-5 & ITU-6, were prepared at JRC Karlsruhe for the irradiation experiment FUTURIX-FTA (FUel for Transmutation of transURanium elements in phenIX/Fortes Teneurs en Actinide). The experiment performed from 2007 to 2009 in the Phénix reactor, France, in cooperation with CEA. The experiment ended after 235 equivalent full power days (EFPD) at a Linear Heat Rate of circa 130 W/cm and reached burn-ups of 18 %FIHMA and 13 %FIHMA, respectively. Afterwards, the pins were transported to the Hot Cells of JRC Karlsruhe for Post Irradiation Examination. After a short summary describing the fuel preparation and irradiation conditions of the FUTURIX FTA irradiation experiment, the paper will give an overview on the current status and further planning of the Post Irradiation Examinations of ITU-5 & ITU-6 at JRC Karlsruhe. Finally, the results of the characterisations will be discussed and conclusions on the irradiation performance will be drawn. The results of this experiment will help to increase the knowledge and understanding of the irradiation behaviour of metal based transmutation targets and the qualification and validation of models developed to predict fuel safety performance.
2017
978-488898256-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/859396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact