How can one change a system, in order to change its statistical properties in a prescribed way? In this note we consider a control problem related to the theory of linear response. Given an expanding map of the unit circle with an associated invariant density, we can consider the inverse problem of finding which first order changes in the transformation can achieve a given first order perturbation in the density. We show the general mathematical structure of the problem, the existence of many solutions in the case of expanding maps of the circle and the existence of optimal ones. We investigate in depth the example of the doubling map, where we give a complete solution of the problem.

Controlling the statistical properties of expanding maps

Galatolo Stefano;
2017-01-01

Abstract

How can one change a system, in order to change its statistical properties in a prescribed way? In this note we consider a control problem related to the theory of linear response. Given an expanding map of the unit circle with an associated invariant density, we can consider the inverse problem of finding which first order changes in the transformation can achieve a given first order perturbation in the density. We show the general mathematical structure of the problem, the existence of many solutions in the case of expanding maps of the circle and the existence of optimal ones. We investigate in depth the example of the doubling map, where we give a complete solution of the problem.
2017
Galatolo, Stefano; Mark, Pollicott
File in questo prodotto:
File Dimensione Formato  
Galatolo_2017_Nonlinearity_30_2737(1).pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 845.36 kB
Formato Adobe PDF
845.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/861224
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact