Like mitochondria, peroxisomes produce reactive oxygen species (ROS), compounds which have been implicated to play an important role in many degenerative diseases and aging itself, and an exaggerated ROS production might occur in altered or older organelles. Growing evidence shows that autophagy, a required function in cell housekeeping during fasting, can remove damaged macromolecules, organelles, and membranes selectively. Proliferation of peroxisomes can be enhanced in liver cells by perfluorooctanoic acid (PFOA), which causes a marked increase of the Acyl-CoA oxidase (ACOX) activity and no significant change in urate oxidase (UOX) activity. The administration of antilipolytic drugs to fasted animals was shown to intensify autophagy. Here we tested the hypothesis that autophagy may distinguish and remove older from younger peroxisomes in rat liver. Male Sprague-Dawley rats were given PFOA (150 mg/kg body weight) or vehicle. Animals were sacrificed at different times following PFOA administration, and 3 h after the induction of autophagy with the antilipolytic agent 3,5-dimethyl pyrazole (DMP, 12 mg/kg body weight). The levels of ACOX and UOX activity were measured in the liver tissue. Results showed that autophagy caused a parallel, significant decrease in both enzymes activity in control rats, and that in PFOA-treated rats the effects were different and changed with PFOA time administration. Changes are compatible with the hypothesis that newly formed ACOX-rich peroxisomes are resistant to pexophagy and that sensitivity to pexophagy increases with increasing peroxisomal “age.” In conclusion, there is indirect evidence supporting the hypothesis that autophagy may recognize and degrade older peroxisomes.

Peroxisomes proliferation and pharmacological stimulation of autophagy in rat liver: evidence to support that autophagy may remove the “older” peroxisomes

CAVALLINI, GABRIELLA;
2017-01-01

Abstract

Like mitochondria, peroxisomes produce reactive oxygen species (ROS), compounds which have been implicated to play an important role in many degenerative diseases and aging itself, and an exaggerated ROS production might occur in altered or older organelles. Growing evidence shows that autophagy, a required function in cell housekeeping during fasting, can remove damaged macromolecules, organelles, and membranes selectively. Proliferation of peroxisomes can be enhanced in liver cells by perfluorooctanoic acid (PFOA), which causes a marked increase of the Acyl-CoA oxidase (ACOX) activity and no significant change in urate oxidase (UOX) activity. The administration of antilipolytic drugs to fasted animals was shown to intensify autophagy. Here we tested the hypothesis that autophagy may distinguish and remove older from younger peroxisomes in rat liver. Male Sprague-Dawley rats were given PFOA (150 mg/kg body weight) or vehicle. Animals were sacrificed at different times following PFOA administration, and 3 h after the induction of autophagy with the antilipolytic agent 3,5-dimethyl pyrazole (DMP, 12 mg/kg body weight). The levels of ACOX and UOX activity were measured in the liver tissue. Results showed that autophagy caused a parallel, significant decrease in both enzymes activity in control rats, and that in PFOA-treated rats the effects were different and changed with PFOA time administration. Changes are compatible with the hypothesis that newly formed ACOX-rich peroxisomes are resistant to pexophagy and that sensitivity to pexophagy increases with increasing peroxisomal “age.” In conclusion, there is indirect evidence supporting the hypothesis that autophagy may recognize and degrade older peroxisomes.
2017
Cavallini, Gabriella; Donati, Alessio; Taddei, Michele; Bergamini, Ettore
File in questo prodotto:
File Dimensione Formato  
CavalliniG_864273Editoriale.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
MCBI-D-16-01228_R1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 618.28 kB
Formato Adobe PDF
618.28 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/864273
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact