Grid shells supporting transparent or opaque panels are largely used to cover long-spanned spaces because of their lightness, the easy setup, and economy. This paper presents the results of experimental static and dynamic investigations carried out on a large-scale freeform grid shell mock-up, whose geometry descended from an innovative Voronoi polygonal pattern. Accompanying finite-element method (FEM) simulations followed. To these purposes, a four-step procedure was adopted: (1) a perfect FEM model was analyzed; (2) using the modal shapes scaled by measuring the mock-up, a deformed unloaded geometry was built, which took into account the defects caused by the assembly phase; (3) experimental static tests were executed by affixing weights to the mockup, and a simplified representative FEM model was calibrated, choosing the nodes stiffness and the material properties as parameters; and (4) modal identification was performed through operational modal analysis and impulsive tests, and then, a simplified FEM dynamical model was calibrated. Due to the high deformability of the mockup, only a symmetric load case configuration was adopted.

Experimental static and dynamic tests on a large-scale free-form Voronoi grid shell mock-up in comparison with finite-element method results

FROLI, MAURIZIO;LACCONE, FRANCESCO
2017-01-01

Abstract

Grid shells supporting transparent or opaque panels are largely used to cover long-spanned spaces because of their lightness, the easy setup, and economy. This paper presents the results of experimental static and dynamic investigations carried out on a large-scale freeform grid shell mock-up, whose geometry descended from an innovative Voronoi polygonal pattern. Accompanying finite-element method (FEM) simulations followed. To these purposes, a four-step procedure was adopted: (1) a perfect FEM model was analyzed; (2) using the modal shapes scaled by measuring the mock-up, a deformed unloaded geometry was built, which took into account the defects caused by the assembly phase; (3) experimental static tests were executed by affixing weights to the mockup, and a simplified representative FEM model was calibrated, choosing the nodes stiffness and the material properties as parameters; and (4) modal identification was performed through operational modal analysis and impulsive tests, and then, a simplified FEM dynamical model was calibrated. Due to the high deformability of the mockup, only a symmetric load case configuration was adopted.
2017
Froli, Maurizio; Laccone, Francesco
File in questo prodotto:
File Dimensione Formato  
IJASE Voronoi 2017 Froli Laccone.pdf

accesso aperto

Descrizione: pdf completo
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/870284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact