Aluminum (Al) represents a widespread environmental pollutant, with severe toxic impacts on plants. In this study, we documented for the first time the structural and functional responses induced by two concentrations of AlCl3 (10−2 M and 10−1 M) in the polytene chromosomes that characterize the chromatin organization in the embryo suspensor cells of Phaseolus coccineus. Polytene chromosomes showed signs of dose-dependent genotoxicity following AlCl3 treatments with a significant increase in both chromatin stickiness and chromatin fragmentation. Polytene chromosomes specifically reacted to AlCl3 also in terms of DNA and RNA puffing activity: with respect to the control, the treatments promoted ex-novo and/or inhibited puff formation along chromosome arms, suggesting a fine modulation of the differential genome activity in response to the treatments. The nuclei of suspensors from control and treated seeds showed nucleoli mainly arranged by more than one NOR-bearing chromosome. In addition, AlCl3 treatments affected the frequency of nucleoli organized by singular organizer chromosomes, with an increase in the frequencies of nucleoli organized by chromosome II and a reduction in the frequencies of those organized by chromosomes I or V. These results confirm that, also in our system, nucleolus may react as stress response organelle. Introduction
Autori: | RUFFINI CASTIGLIONE, MONICA (Corresponding) |
Autori: | Bartoli, Giacomo; SANITA' di TOPPI, Luigi; Andreucci, Andrea; RUFFINI CASTIGLIONE, Monica |
Titolo: | Aluminum effects on embryo suspensor polytene chromosomes of Phaseolus coccineus L |
Anno del prodotto: | 2018 |
Abstract: | Aluminum (Al) represents a widespread environmental pollutant, with severe toxic impacts on plants. In this study, we documented for the first time the structural and functional responses induced by two concentrations of AlCl3 (10−2 M and 10−1 M) in the polytene chromosomes that characterize the chromatin organization in the embryo suspensor cells of Phaseolus coccineus. Polytene chromosomes showed signs of dose-dependent genotoxicity following AlCl3 treatments with a significant increase in both chromatin stickiness and chromatin fragmentation. Polytene chromosomes specifically reacted to AlCl3 also in terms of DNA and RNA puffing activity: with respect to the control, the treatments promoted ex-novo and/or inhibited puff formation along chromosome arms, suggesting a fine modulation of the differential genome activity in response to the treatments. The nuclei of suspensors from control and treated seeds showed nucleoli mainly arranged by more than one NOR-bearing chromosome. In addition, AlCl3 treatments affected the frequency of nucleoli organized by singular organizer chromosomes, with an increase in the frequencies of nucleoli organized by chromosome II and a reduction in the frequencies of those organized by chromosomes I or V. These results confirm that, also in our system, nucleolus may react as stress response organelle. Introduction |
Digital Object Identifier (DOI): | 10.1080/11263504.2017.1359213 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Al Bartoli et al revised.pdf | Post-print | Tutti i diritti riservati (All rights reserved) | Open Access Visualizza/Apri | |
Aluminum Phaseolus coccineus L DEF.pdf | Editoriale | NON PUBBLICO - Accesso privato/ristretto | Utenti riconosciuti Richiedi una copia |