The Little Ice Age (LIA) is a well-recognized climatic event during which the glaciers in the Alps advanced and reached their maximum Holocene extent. During their retreat following the LIA, the glaciers left large areas of loose or poorly consolidated glacial deposits in their forelands, which are subject to paraglacial reworking and may represent potential hazards for human infrastructures. In this study, we present a regional scale mapping of the LIA and post-LIA glacial deposits and a reconstruction of the maximum LIA extents of glaciers in the same area. This work is motivated by a local law requiring the classification of areas subject to natural hazards in Trentino (Italian Alps). Results highlight that glaciers shrunk by 63% from the LIA maximum, leaving 30 km2 of unconsolidated deposits, which are subject to geomorphic paraglacial processes. Potentially hazardous consequences can occur, in particular, during high-magnitude instantaneous events, causing debris and mud flows, mass wasting from debris-covered ice, and floods from small moraine-dammed lakes.

Little Ice Age mapping as a tool for identifying hazard in the paraglacial environment: The case study of Trentino (Eastern Italian Alps)

BARONI, CARLO
Supervision
;
SALVATORE, MARIA CRISTINA
Investigation
;
2017-01-01

Abstract

The Little Ice Age (LIA) is a well-recognized climatic event during which the glaciers in the Alps advanced and reached their maximum Holocene extent. During their retreat following the LIA, the glaciers left large areas of loose or poorly consolidated glacial deposits in their forelands, which are subject to paraglacial reworking and may represent potential hazards for human infrastructures. In this study, we present a regional scale mapping of the LIA and post-LIA glacial deposits and a reconstruction of the maximum LIA extents of glaciers in the same area. This work is motivated by a local law requiring the classification of areas subject to natural hazards in Trentino (Italian Alps). Results highlight that glaciers shrunk by 63% from the LIA maximum, leaving 30 km2 of unconsolidated deposits, which are subject to geomorphic paraglacial processes. Potentially hazardous consequences can occur, in particular, during high-magnitude instantaneous events, causing debris and mud flows, mass wasting from debris-covered ice, and floods from small moraine-dammed lakes.
2017
Zanoner, Thomas; Carton, Alberto; Seppi, Roberto; Carturan, Luca; Baroni, Carlo; Salvatore, MARIA CRISTINA; Zumiani, Matteo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/871249
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact