We consider the isentropic compressible Euler system in 2 space dimensions with pressure law p(\rho)=\rho^2 and we show the existence of classical Riemann data, i.e. pure jump discontinuities across a line, for which there are infinitely many admissible bounded weak solutions (bounded away from the void). We also show that some of these Riemann data are generated by a 1-dimensional compression wave: our theorem leads therefore to Lipschitz initial data for which there are infinitely many global bounded admissible weak solutions.

Global Ill-Posedness of the Isentropic System of Gas Dynamics

CHIODAROLI, ELISABETTA;
2015-01-01

Abstract

We consider the isentropic compressible Euler system in 2 space dimensions with pressure law p(\rho)=\rho^2 and we show the existence of classical Riemann data, i.e. pure jump discontinuities across a line, for which there are infinitely many admissible bounded weak solutions (bounded away from the void). We also show that some of these Riemann data are generated by a 1-dimensional compression wave: our theorem leads therefore to Lipschitz initial data for which there are infinitely many global bounded admissible weak solutions.
2015
Chiodaroli, Elisabetta; De Lellis, Camillo; Kreml, Ondrej
File in questo prodotto:
File Dimensione Formato  
1304.0123-1.pdf

accesso aperto

Descrizione: Versione post-print
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 401.78 kB
Formato Adobe PDF
401.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/872521
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 140
social impact