We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between non-adiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (average value of the Hamiltonian) as a measure of the deviation from reaching the target final ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find a robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the non-adiabatic effects and the dissipative processes. We compare these results with matrix-product-operator simulations of an Ising system and show that the phenomenology we found applies also for this more realistic case.

Dissipation in adiabatic quantum computers: Lessons from an exactly solvable model

ROSSINI, DAVIDE
2017

Abstract

We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between non-adiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (average value of the Hamiltonian) as a measure of the deviation from reaching the target final ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find a robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the non-adiabatic effects and the dissipative processes. We compare these results with matrix-product-operator simulations of an Ising system and show that the phenomenology we found applies also for this more realistic case.
Maximilian, Keck; Simone, Montangero; Giuseppe E., Santoro; Rosario, Fazio; Rossini, Davide
File in questo prodotto:
File Dimensione Formato  
NJP_19_113029_IsingDiss.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/876445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact