We have previously demonstrated that the Slit proteins, which are involved in axonal guidance and related processes, are high-affinity ligands of the heparan sulfate proteoglycan glypican-1. Glypican–Slit protein interactions have now been characterized in greater detail using two approaches. The ability of heparin oligosaccharides of defined structure (ranging in size from disaccharide to tetradeccasaccharide) to inhibit binding of a glypican-Fc fusion protein to recombinant human Slit-2 was determined using an ELISA. Surface plasmon resonance (SPR) spectroscopy, which measures the interactions in real time, was applied for quantitative modeling of heparin–Slit binding on heparin biochips. Heparin was covalently immobilized on these chips through a pre-formed albumin–heparin conjugate, and the inhibition of Slit binding by heparin, LMW heparin, and heparin-derived oligosaccharides (di-, tetra-, hexa-, and octa-) was examined utilizing solution competition SPR. These competition studies demonstrate that the smallest heparin oligosaccharide competing with heparin binding to Slit was a tetrasaccharide, and that in the ELISA maximum inhibition (∼60% at 2 μM concentration) was attained with a dodecasaccharide.

Structural determinants of heparan sulfate interactions with Slit proteins

RONCA, FRANCESCA;
2004-01-01

Abstract

We have previously demonstrated that the Slit proteins, which are involved in axonal guidance and related processes, are high-affinity ligands of the heparan sulfate proteoglycan glypican-1. Glypican–Slit protein interactions have now been characterized in greater detail using two approaches. The ability of heparin oligosaccharides of defined structure (ranging in size from disaccharide to tetradeccasaccharide) to inhibit binding of a glypican-Fc fusion protein to recombinant human Slit-2 was determined using an ELISA. Surface plasmon resonance (SPR) spectroscopy, which measures the interactions in real time, was applied for quantitative modeling of heparin–Slit binding on heparin biochips. Heparin was covalently immobilized on these chips through a pre-formed albumin–heparin conjugate, and the inhibition of Slit binding by heparin, LMW heparin, and heparin-derived oligosaccharides (di-, tetra-, hexa-, and octa-) was examined utilizing solution competition SPR. These competition studies demonstrate that the smallest heparin oligosaccharide competing with heparin binding to Slit was a tetrasaccharide, and that in the ELISA maximum inhibition (∼60% at 2 μM concentration) was attained with a dodecasaccharide.
2004
Zhang, F.; Ronca, Francesca; Linhardt, R. J.; Margolis, R. U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/88393
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact