Massive MIMO (multiple-input multiple-output) provides great improvements in spectral efficiency over legacy cellular networks, by coherent combining of the signals over a large antenna array and by spatial multiplexing of many users. Since its inception, the coherent interference caused by pilot contamination has been believed to be an impairment that does not vanish, even with an unlimited number of antennas. In this work, we show that this belief is incorrect and an artifact from using simplistic channel models and suboptimal signal processing schemes. We focus on the uplink and prove that with multicell MMSE combining, the spectral efficiency grows without bound as the number of antennas increases, even under pilot contamination, under a condition of linear independence between the channel covariance matrices. This condition is generally satisfied, except in special cases that are hardly found in practice.

Pilot contamination is not a fundamental asymptotic limitation in massive MIMO

Sanguinetti, Luca
2017-01-01

Abstract

Massive MIMO (multiple-input multiple-output) provides great improvements in spectral efficiency over legacy cellular networks, by coherent combining of the signals over a large antenna array and by spatial multiplexing of many users. Since its inception, the coherent interference caused by pilot contamination has been believed to be an impairment that does not vanish, even with an unlimited number of antennas. In this work, we show that this belief is incorrect and an artifact from using simplistic channel models and suboptimal signal processing schemes. We focus on the uplink and prove that with multicell MMSE combining, the spectral efficiency grows without bound as the number of antennas increases, even under pilot contamination, under a condition of linear independence between the channel covariance matrices. This condition is generally satisfied, except in special cases that are hardly found in practice.
2017
9781467389990
File in questo prodotto:
File Dimensione Formato  
ICC17_with copyright statement.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 251.31 kB
Formato Adobe PDF
251.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/884506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 0
social impact