A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.

Post-20 Ma Motion of the Adriatic Plate: New Constraints From Surrounding Orogens and Implications for Crust-Mantle Decoupling

Molli, Giancarlo;
2017-01-01

Abstract

A new kinematic reconstruction that incorporates estimates of post-20 Ma shortening and extension in the Apennines, Alps, Dinarides, and Sicily Channel Rift Zone (SCRZ) reveals that the Adriatic microplate (Adria) rotated counterclockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Minimum and maximum amounts of rotation are derived by using, respectively, estimates of crustal extension along the SCRZ (minimum of 30 km) combined with crustal shortening in the Eastern Alps (minimum of 115 km) and a maximum amount (140 km) of convergence between Adria and Moesia across the southern Dinarides and Carpatho-Balkan orogens. When combined with Neogene convergence in the Western Alps, the best fit of available structural data constrains Adria to have moved 113 km to the NW (azimuth 325°) while rotating 5 ± 3° counterclockwise relative to Europe since 20 Ma. Amounts of plate convergence predicted by our new model exceed Neogene shortening estimates of several tens of kilometers in both the Apennines and Dinarides. We attribute this difference to crust-mantle decoupling (delamination) during rollback in the Apennines and to distributed deformation related to the northward motion of the Dacia Unit between the southern Dinarides and Europe (Moesia). Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenides slab pulling to the northeast, and crustal wedging in the Western Alps, which acted as a pivot and stopped farther northwestward motion of Adria relative to Europe.
2017
Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil
File in questo prodotto:
File Dimensione Formato  
LeBreton et al 2017 Tectonics .pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 488.61 kB
Formato Adobe PDF
488.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Le Breton et al 2017 xOA.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885270
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 82
social impact