Bioprinting promises to create three-dimensional in vitro models to study pathological states and possible new therapies, and in the future, to produce complex tissue and organ replacements. This article will describe the recent advances in bioprinting technologies to engineer artificial tissues and organs by controlling spatial heterogeneity of chemical and physical properties of scaffolds and, at the same time, the cellular composition and spatial arrangement. Despite significant technological improvements in recent years, the positioning at the micrometric level and the switching of different cell types and biomaterials remain a challenge, which limits the development of resilient vascular, neural, and lymphatic networks for metabolites, signaling, and waste transport, and thus limits the development of thick and clinically relevant engineered vascularized tissues.

Multimaterial, heterogeneous, and multicellular three-dimensional bioprinting

De Maria, Carmelo;Vozzi, Giovanni;
2017-01-01

Abstract

Bioprinting promises to create three-dimensional in vitro models to study pathological states and possible new therapies, and in the future, to produce complex tissue and organ replacements. This article will describe the recent advances in bioprinting technologies to engineer artificial tissues and organs by controlling spatial heterogeneity of chemical and physical properties of scaffolds and, at the same time, the cellular composition and spatial arrangement. Despite significant technological improvements in recent years, the positioning at the micrometric level and the switching of different cell types and biomaterials remain a challenge, which limits the development of resilient vascular, neural, and lymphatic networks for metabolites, signaling, and waste transport, and thus limits the development of thick and clinically relevant engineered vascularized tissues.
2017
De Maria, Carmelo; Vozzi, Giovanni; Moroni, Lorenzo
File in questo prodotto:
File Dimensione Formato  
multimaterial_heterogeneous_and_multicellular_threedimensional_bioprinting (1).pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 9.24 MB
Formato Adobe PDF
9.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/885350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact