In this study, we have examined the presence and inducibility of phase I and II drug-metabolizing enzymes in the liver and nasal mucosa of Italian water frogs of control and pretreated with beta-naphthoflavone, phenobarbital and dichlobenil by using typical substrates for these enzymes along with polyclonal antibodies mainly raised against mammalian enzymes. The CYP content and various monooxygenase and phase II enzyme activities in the liver of this frog were found similar, when reported, to those of largely aquatic and semiaquatic frogs. The treatment with beta-naphthoflavone resulted in an induction in the liver of a CYP1A and the induction was manifested by (a) immunoblot analysis using anti-rat CYP1A1, (b) an increase of CYP1A-mediated methoxyresorufin-O-demethylase and ethoxyresorufin-O-deethylase activities. The treatments with both phenobarbital and dichlobenil did not produce in the liver any effect on the assayed enzymes. When the nasal mucosa of water frogs was analyzed, various monooxygenase and phase II enzymatic activities, generally comparable to those of liver, were determined. However, by using antibodies anti-three GST different classes, we found a different reactivity into the cytosol of the two tissues indicating a differential tissue susceptibility to toxic effects of xenobiotics. In the nasal mucosa, a protein immunorelated to CYP2A and monooxygenase activities (i.e. ethoxycoumarin-O-deethylase and coumarin-7-hydroxylase) linked in mammals to this isoform have also been found. The treatment of water frogs with the herbicide dichlobenil decreased both the above-mentioned activities and the immunoreactive CYP2A apoprotein. The pretreatment with metyrapone, a CYP inhibitor, protected the CYP2A apoprotein and its linked activities from toxic effect of dichlobenil indicating a key role of this enzyme in the bioactivation of this herbicide. The findings of the present work suggest that the hepatic CYP1A induction and the nasal CYP2A-like inhibition profiles might provide two potential biomarkers of the Italian water frogs exposure to environmental and aquatic pollutants.

Effects of b-naphtoflavone, phenobarbital and diclobenil on the drug-metabolizing system of liver and nasal mucosa of an italian frog (rana lessonae-rana esculenta ibrid)

SALVETTI, ALESSANDRA;BUCCI, STEFANIA
2004-01-01

Abstract

In this study, we have examined the presence and inducibility of phase I and II drug-metabolizing enzymes in the liver and nasal mucosa of Italian water frogs of control and pretreated with beta-naphthoflavone, phenobarbital and dichlobenil by using typical substrates for these enzymes along with polyclonal antibodies mainly raised against mammalian enzymes. The CYP content and various monooxygenase and phase II enzyme activities in the liver of this frog were found similar, when reported, to those of largely aquatic and semiaquatic frogs. The treatment with beta-naphthoflavone resulted in an induction in the liver of a CYP1A and the induction was manifested by (a) immunoblot analysis using anti-rat CYP1A1, (b) an increase of CYP1A-mediated methoxyresorufin-O-demethylase and ethoxyresorufin-O-deethylase activities. The treatments with both phenobarbital and dichlobenil did not produce in the liver any effect on the assayed enzymes. When the nasal mucosa of water frogs was analyzed, various monooxygenase and phase II enzymatic activities, generally comparable to those of liver, were determined. However, by using antibodies anti-three GST different classes, we found a different reactivity into the cytosol of the two tissues indicating a differential tissue susceptibility to toxic effects of xenobiotics. In the nasal mucosa, a protein immunorelated to CYP2A and monooxygenase activities (i.e. ethoxycoumarin-O-deethylase and coumarin-7-hydroxylase) linked in mammals to this isoform have also been found. The treatment of water frogs with the herbicide dichlobenil decreased both the above-mentioned activities and the immunoreactive CYP2A apoprotein. The pretreatment with metyrapone, a CYP inhibitor, protected the CYP2A apoprotein and its linked activities from toxic effect of dichlobenil indicating a key role of this enzyme in the bioactivation of this herbicide. The findings of the present work suggest that the hepatic CYP1A induction and the nasal CYP2A-like inhibition profiles might provide two potential biomarkers of the Italian water frogs exposure to environmental and aquatic pollutants.
2004
Longo, V.; Marini, S.; Gervasi, P. G.; Salvetti, Alessandra; Angelucci, S.; Bucci, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/88581
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact