We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.

A fast algorithm for large common connected induced subgraphs

Conte, Alessio;Grossi, Roberto;Marino, Andrea;Tattini, Lorenzo;Versari, Luca
2017-01-01

Abstract

We present a fast algorithm for finding large common subgraphs, which can be exploited for detecting structural and functional relationships between biological macromolecules. Many fast algorithms exist for finding a single maximum common subgraph. We show with an example that this gives limited information, motivating the less studied problem of finding many large common subgraphs covering different areas. As the latter is also hard, we give heuristics that improve performance by several orders of magnitude. As a case study, we validate our findings experimentally on protein graphs with thousands of atoms.
2017
9783319581620
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/887587
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact