In this paper we present the code BiM, based on blended implicit methods (J. Comput. Appl. Math. 116 (2000) 41; Appl. Numer. Math. 42 (2002) 29; Recent Trends in Numerical Analysis, Nova Science Publ. Inc., New York, 2001, pp. 81.), for the numerical solution of stiff initial value problems for ODEs. We describe in detail most of the implementation strategies used in the construction of the code, and report numerical tests comparing the code BiM with some of the best codes currently available. The numerical tests show that the new code compares well with existing ones. Moreover, the methods implemented in the code are characterized by a diagonal nonlinear splitting, which makes its extension for parallel computers very straightforward.
The BiM code for the numerical solution of ODEs
BRUGNANO, LUIGI;MAGHERINI, CECILIA
2004-01-01
Abstract
In this paper we present the code BiM, based on blended implicit methods (J. Comput. Appl. Math. 116 (2000) 41; Appl. Numer. Math. 42 (2002) 29; Recent Trends in Numerical Analysis, Nova Science Publ. Inc., New York, 2001, pp. 81.), for the numerical solution of stiff initial value problems for ODEs. We describe in detail most of the implementation strategies used in the construction of the code, and report numerical tests comparing the code BiM with some of the best codes currently available. The numerical tests show that the new code compares well with existing ones. Moreover, the methods implemented in the code are characterized by a diagonal nonlinear splitting, which makes its extension for parallel computers very straightforward.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.