Dijet events are studied in the proton-proton collision data set recorded at s=13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb-1 and 33.5 fb-1 respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The data set is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy Wâ ² bosons, Wâ bosons, and a range of masses and couplings in a Zâ ² dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.

Search for new phenomena in dijet events using 37 fb⁻¹ of pp collision data collected at √s =13 TeV with the ATLAS detector

Cavasinni, V.;Dell'Orso, M.;Donati, S.
;
Francavilla, P.;Roda, C.;Verducci, M.;
2017-01-01

Abstract

Dijet events are studied in the proton-proton collision data set recorded at s=13 TeV with the ATLAS detector at the Large Hadron Collider in 2015 and 2016, corresponding to integrated luminosities of 3.5 fb-1 and 33.5 fb-1 respectively. Invariant mass and angular distributions are compared to background predictions and no significant deviation is observed. For resonance searches, a new method for fitting the background component of the invariant mass distribution is employed. The data set is then used to set upper limits at a 95% confidence level on a range of new physics scenarios. Excited quarks with masses below 6.0 TeV are excluded, and limits are set on quantum black holes, heavy Wâ ² bosons, Wâ bosons, and a range of masses and couplings in a Zâ ² dark matter mediator model. Model-independent limits on signals with a Gaussian shape are also set, using a new approach allowing factorization of physics and detector effects. From the angular distributions, a scale of new physics in contact interaction models is excluded for scenarios with either constructive or destructive interference. These results represent a substantial improvement over those obtained previously with lower integrated luminosity.
2017
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abr...espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevD.96.052004.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 953.26 kB
Formato Adobe PDF
953.26 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/893036
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 213
  • ???jsp.display-item.citation.isi??? 179
social impact