Electrochemical micromachining (ECµM) is an emerging non-conventional manufacturing technology suitable for the fabrication of micro-sized components on a wide range of electrically conductive materials. This study emphasises on the effects of electrolyte temperature on the Faradaic effect during electrochemical microdrilling on nickel plates by a cylindrical microtool made of tungsten. A short cylindrical microtool of 43 µm in diameter near to the tool tip and 53 µm mean diameter was selected, and allowed to machine on nickel plate. During machining, only the electrolyte temperature was varied keeping all the other parameters constant. The shape and size of the fabricated microholes, machining time, actual material removal rate, non-Faradaic non-transient effect and the number of short circuits are considered as response factors. Experimental results confirm that the material removal rate and machining time, respectively, increases and decreases with an increase in the electrolyte temperature. It is also observed that both the side gap ratio and the taper angle increase with the electrolyte temperature.

Effect of electrolyte temperature on Faradaic effect in electrochemical microdrilling

Fantoni, G.;
2017-01-01

Abstract

Electrochemical micromachining (ECµM) is an emerging non-conventional manufacturing technology suitable for the fabrication of micro-sized components on a wide range of electrically conductive materials. This study emphasises on the effects of electrolyte temperature on the Faradaic effect during electrochemical microdrilling on nickel plates by a cylindrical microtool made of tungsten. A short cylindrical microtool of 43 µm in diameter near to the tool tip and 53 µm mean diameter was selected, and allowed to machine on nickel plate. During machining, only the electrolyte temperature was varied keeping all the other parameters constant. The shape and size of the fabricated microholes, machining time, actual material removal rate, non-Faradaic non-transient effect and the number of short circuits are considered as response factors. Experimental results confirm that the material removal rate and machining time, respectively, increases and decreases with an increase in the electrolyte temperature. It is also observed that both the side gap ratio and the taper angle increase with the electrolyte temperature.
2017
Mithu, M. A. H.; Fantoni, G.; Ciampi, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/893132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact