This paper presents the definition and implementation design of a low power data bus encoding scheme dedicated to system on chip video architectures. Trends in CMOS technologies focus the attention on the energy consumption issue related to on-chip global communication; this is especially true for data dominated applications such as video processing. Taking into account scaling effects a novel coupling-aware bus power model is used to investigate the statistical properties of video data collected in the system bus of a reference hardware/software H.263/MPEG-4 video coder architecture. The results of this analysis and the low complexity requirements drive the definition of a bus encoding scheme called CDSPBI (Coupling Driven Separated Partial Bus Invert), optimized ad-hoc for video data. A VLSI implementation of the coding circuits completes the work with an area/delay/power characterization that shows the effectiveness of the proposed scheme in terms of global power saving for a small circuit area overhead.

Coupling-driven data bus encoding for SoC video architectures

FANUCCI, LUCA;
2004-01-01

Abstract

This paper presents the definition and implementation design of a low power data bus encoding scheme dedicated to system on chip video architectures. Trends in CMOS technologies focus the attention on the energy consumption issue related to on-chip global communication; this is especially true for data dominated applications such as video processing. Taking into account scaling effects a novel coupling-aware bus power model is used to investigate the statistical properties of video data collected in the system bus of a reference hardware/software H.263/MPEG-4 video coder architecture. The results of this analysis and the low complexity requirements drive the definition of a bus encoding scheme called CDSPBI (Coupling Driven Separated Partial Bus Invert), optimized ad-hoc for video data. A VLSI implementation of the coding circuits completes the work with an area/delay/power characterization that shows the effectiveness of the proposed scheme in terms of global power saving for a small circuit area overhead.
2004
Fanucci, Luca; Locatelli, R; Minghi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/89336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact