The process e+e-→π⁺π⁻π⁰π⁰ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb-1 of data collected around a center-of-mass energy of s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (gμπ+π-2π0-2)/2=(17.9±0.1stat±0.6syst)×10-10 in the energy range 0.85 GeV<ECM<1.8 GeV. In the same energy range, the impact on the running of the fine-structure constant at the Z0-pole is determined as Δαπ+π-2π0(MZ2)=(4.44±0.02stat±0.14syst)×10-4. Furthermore, intermediate resonances are studied and especially the cross section of the process e+e-→ωπ0→π+π-2π0 is measured.

Measurement of the e⁺e⁻→π⁺π⁻π⁰π⁰ cross section using initial-state radiation at BABAR

Batignani, G.;Bettarini, S.;Casarosa, G.;Forti, F.;Giorgi, M. A.;Paoloni, E.;Rizzo, G.;Lueck, T.;
2017-01-01

Abstract

The process e+e-→π⁺π⁻π⁰π⁰ is investigated by means of the initial-state radiation technique, where a photon is emitted from the incoming electron or positron. Using 454.3 fb-1 of data collected around a center-of-mass energy of s=10.58 GeV by the BABAR experiment at SLAC, approximately 150000 signal events are obtained. The corresponding nonradiative cross section is measured with a relative uncertainty of 3.6% in the energy region around 1.5 GeV, surpassing all existing measurements in precision. Using this new result, the channel's contribution to the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon is calculated as (gμπ+π-2π0-2)/2=(17.9±0.1stat±0.6syst)×10-10 in the energy range 0.85 GeV
2017
Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Y. u. G.; Fritsch, M.; Koch, H.; Schroeder, T.;...espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevD.96.092009.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/895545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 32
social impact