The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e-- collier SuperKEKB in Tsukuba (Japan). In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated Y (4S) → BB events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum.

The track finding algorithm of the Belle II vertex detectors

Casarosa, Giulia;Lueck, Thomas;Oberhof, Benjamin;Paoloni, Eugenio;
2017-01-01

Abstract

The Belle II experiment is a high energy multi purpose particle detector operated at the asymmetric e+e-- collier SuperKEKB in Tsukuba (Japan). In this work we describe the algorithm performing the pattern recognition for inner tracking detector which consists of two layers of pixel detectors and four layers of double sided silicon strip detectors arranged around the interaction region. The track finding algorithm will be used both during the High Level Trigger on-line track reconstruction and during the off-line full reconstruction. It must provide good efficiency down to momenta as low as 50 MeV/c where material effects are sizeable even in an extremely thin detector as the VXD. In addition it has to be able to cope with the high occupancy of the Belle II detectors due to the background. The underlying concept of the track finding algorithm, as well as details of the implementation are outlined. The algorithm is proven to run with good performance on simulated Y (4S) → BB events with an efficiency for reconstructing tracks of above 90% over a wide range of momentum.
2017
Bilka, Tadeas; Braun, Nils; Casarosa, Giulia; Frost, Oliver; Frã¼hwirth, Rudolf; Hauth, Thomas; Heck, Martin; Kandra, Jakub; Kodys, Peter; Kvasnicka, ...espandi
File in questo prodotto:
File Dimensione Formato  
epjconf_ctdw2017_00007.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/896736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact