Thyroid hormones (THs) have a major role in regulating cardiac function. Their classical mechanism of action is genomic. Recent findings have broadened our knowledge about the (patho)physiology of cardiac regulation by THs, to include non-genomic actions of THs and their metabolites (THM). This review provides an overview of classical and non-classical cardiac effects controlled by: i) iodothyronines (thyroxine, T4; 3,5,3’-triiodothyronine,T3; 3, 5-diiodothyronine, T2); ii) thyronamines (thyronamine, T0AM; 3-iodothyronamine, T1AM); and iii) iodothyroacetic acids (3, 5, 3′, 5’-tetraiodothyroacetic acid, tetrac; 3, 5, 3’-triiodothyroacetic acid, triac; 3-iodothyroacetic acid, TA1). Whereas iodothyronines enhance both diastolic and systolic function and heart rate, thyronamines were observed to have negative inotropic and chronotropic effects and might function as a brake with respect to THs, although their physiological role is unclear. Moreover, thyronamines showed a cardioprotective effect at physiological concentrations. The cardiac effects of iodothyroacetic acids seem to be limited and need to be elucidated.

Cardiac actions of thyroid hormone metabolites

Rutigliano, Grazia
Primo
;
Zucchi, Riccardo
Ultimo
2017-01-01

Abstract

Thyroid hormones (THs) have a major role in regulating cardiac function. Their classical mechanism of action is genomic. Recent findings have broadened our knowledge about the (patho)physiology of cardiac regulation by THs, to include non-genomic actions of THs and their metabolites (THM). This review provides an overview of classical and non-classical cardiac effects controlled by: i) iodothyronines (thyroxine, T4; 3,5,3’-triiodothyronine,T3; 3, 5-diiodothyronine, T2); ii) thyronamines (thyronamine, T0AM; 3-iodothyronamine, T1AM); and iii) iodothyroacetic acids (3, 5, 3′, 5’-tetraiodothyroacetic acid, tetrac; 3, 5, 3’-triiodothyroacetic acid, triac; 3-iodothyroacetic acid, TA1). Whereas iodothyronines enhance both diastolic and systolic function and heart rate, thyronamines were observed to have negative inotropic and chronotropic effects and might function as a brake with respect to THs, although their physiological role is unclear. Moreover, thyronamines showed a cardioprotective effect at physiological concentrations. The cardiac effects of iodothyroacetic acids seem to be limited and need to be elucidated.
2017
Rutigliano, Grazia; Zucchi, Riccardo
File in questo prodotto:
File Dimensione Formato  
1812_Cardiac actions of thyroid hormone metabolites (rev).docx

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 112.21 kB
Formato Microsoft Word XML
112.21 kB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/901020
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact