Unmanned Aerial Vehicles (UAVs) have a great potential to support search tasks in unstructured environments. Small, lightweight, low speed and agile UAVs, such as multirotors platforms can incorporate many kinds of sensors that are suitable for detecting object of interests in cluttered outdoor areas. However, due to their limited endurance, moderate computing power, and imperfect sensing, mini-UAVs should be into groups using swarm coordination algorithms to perform tasks in a scalable, reliable and robust manner. In this paper a biologically-inspired mechanisms is adopted to coordinate drones performing target search with imperfect sensors. In essence, coordination can be achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone releases digital pheromone upon sensing of a potential target. Such pheromones can be aggregated and diffused between flocking drones, creating a spatiotemporal attractive potential field. Flocking occurs, as an emergent effect of alignment, separation and cohesion, where drones self organise with similar heading and dynamic arrangement as a group. The emergent coordination of drones relies on the alignment of stigmergy and flocking strategies. This paper reports on the design of the novel swarming algorithm, reviewing different strategies and measuring their performance on a number of synthetic and real-world scenarios.

Swarm coordination of mini-UAVs for target search using imperfect sensors

Alfeo, Antonio L.;Cimino, Mario G. C. A.;De Francesco, Nicoletta;Lazzeri, Alessandro;Vaglini, Gigliola
2018-01-01

Abstract

Unmanned Aerial Vehicles (UAVs) have a great potential to support search tasks in unstructured environments. Small, lightweight, low speed and agile UAVs, such as multirotors platforms can incorporate many kinds of sensors that are suitable for detecting object of interests in cluttered outdoor areas. However, due to their limited endurance, moderate computing power, and imperfect sensing, mini-UAVs should be into groups using swarm coordination algorithms to perform tasks in a scalable, reliable and robust manner. In this paper a biologically-inspired mechanisms is adopted to coordinate drones performing target search with imperfect sensors. In essence, coordination can be achieved by combining stigmergic and flocking behaviors. Stigmergy occurs when a drone releases digital pheromone upon sensing of a potential target. Such pheromones can be aggregated and diffused between flocking drones, creating a spatiotemporal attractive potential field. Flocking occurs, as an emergent effect of alignment, separation and cohesion, where drones self organise with similar heading and dynamic arrangement as a group. The emergent coordination of drones relies on the alignment of stigmergy and flocking strategies. This paper reports on the design of the novel swarming algorithm, reviewing different strategies and measuring their performance on a number of synthetic and real-world scenarios.
2018
Alfeo, Antonio L.; Cimino, Mario G. C. A.; De Francesco, Nicoletta; Lazzeri, Alessandro; Lega, Massimiliano; Vaglini, Gigliola
File in questo prodotto:
File Dimensione Formato  
hdl.handle.net_11568_905517.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
10-IDT.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 608.75 kB
Formato Adobe PDF
608.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/905517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 27
social impact