The paper introduces a new probabilistic tree encoder based on a mixture of Bottom-up Hidden Tree Markov Models. The ability to recognise similar structures in data is experimentally assessed both in clusterization and classification tasks. The results of these preliminary experiments suggest that the model can be successfully used to compress the tree structural and label patterns in a vectorial representation.

Mixture of Hidden Markov Models as Tree Encoder

Davide Bacciu;CASTELLANA, DANIELE
2018-01-01

Abstract

The paper introduces a new probabilistic tree encoder based on a mixture of Bottom-up Hidden Tree Markov Models. The ability to recognise similar structures in data is experimentally assessed both in clusterization and classification tasks. The results of these preliminary experiments suggest that the model can be successfully used to compress the tree structural and label patterns in a vectorial representation.
2018
978-287587047-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/909789
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact