BACKGROUND: Everolimus is the hydroxyethyl derivative of sirolimus and a strong inhibitor of mammalian target of rapamycin (mTOR). This drug has immunosuppressive and anticancer activities and the present in vitro study was aimed at identifying the cellular and molecular profiles of breast cancer cells predictive of sensitivity to everolimus. MATERIALS AND METHODS: MCF-7, T-47D, ZR-75-1, CAMA-1, HCC-1500 and MCF-10A cells were used and viability was assessed using WST-1 dye. Sensitivity to everolimus was correlated with phosphorylation of AKT (Ser473/Thr308), mTOR (Ser2448), and ERK1/2 (Thr202/Tyr204) and mutational profile of KRAS, NRAS, BRAF, PIK3CA, PTEN, TSC1, TSC2 and FRAP genes. Protein phosphorylation was evaluated by AlphaScreen SureFire, while the mutational status was examined by digital droplet PCR and Sanger sequencing. RESULTS: Everolimus showed a transient growth inhibition in non-tumorigenic cells, while in tumorigenic lines the drug suppressed the proliferation in a concentration-dependent manner but with different potency (IC50) and efficacy (Emax), being ZR-75-1 the most sensitive and T47D the least sensitive. MCF-7, T47D and HCC1500 had activating mutations in PIK3CA gene, while loss-of-activity PTEN mutations were detected in sensitive cell lines, including ZR-75-1, which showed no changes or minimal increase in the amount of p-AKT(Ser473/Thr308) and p-ERK1/2(Thr202/Tyr204) induced by everolimus compared to the resistant cell line T47D in which phosphorylation of AKT and ERK was increased. CONCLUSIONS: Cellular levels of p-AKT(Ser473/Thr308) and p-ERK1/2(Thr202/Tyr204), activating mutations of PIK3CA and inactivating mutations of PTEN may predict response to everolimus in breast cancer cells; these findings have potential applications for treatment personalization of everolimus in breast cancer patients.

Phosphorylation of AKT and ERK1/2 and mutations of PIK3CA and PTEN are predictive of breast cancer cell sensitivity to everolimus in vitro

Citi, Valentina;Del Re, Marzia;Martelli, Alma;Calderone, Vincenzo;Breschi, Maria Cristina;Danesi, Romano
2018-01-01

Abstract

BACKGROUND: Everolimus is the hydroxyethyl derivative of sirolimus and a strong inhibitor of mammalian target of rapamycin (mTOR). This drug has immunosuppressive and anticancer activities and the present in vitro study was aimed at identifying the cellular and molecular profiles of breast cancer cells predictive of sensitivity to everolimus. MATERIALS AND METHODS: MCF-7, T-47D, ZR-75-1, CAMA-1, HCC-1500 and MCF-10A cells were used and viability was assessed using WST-1 dye. Sensitivity to everolimus was correlated with phosphorylation of AKT (Ser473/Thr308), mTOR (Ser2448), and ERK1/2 (Thr202/Tyr204) and mutational profile of KRAS, NRAS, BRAF, PIK3CA, PTEN, TSC1, TSC2 and FRAP genes. Protein phosphorylation was evaluated by AlphaScreen SureFire, while the mutational status was examined by digital droplet PCR and Sanger sequencing. RESULTS: Everolimus showed a transient growth inhibition in non-tumorigenic cells, while in tumorigenic lines the drug suppressed the proliferation in a concentration-dependent manner but with different potency (IC50) and efficacy (Emax), being ZR-75-1 the most sensitive and T47D the least sensitive. MCF-7, T47D and HCC1500 had activating mutations in PIK3CA gene, while loss-of-activity PTEN mutations were detected in sensitive cell lines, including ZR-75-1, which showed no changes or minimal increase in the amount of p-AKT(Ser473/Thr308) and p-ERK1/2(Thr202/Tyr204) induced by everolimus compared to the resistant cell line T47D in which phosphorylation of AKT and ERK was increased. CONCLUSIONS: Cellular levels of p-AKT(Ser473/Thr308) and p-ERK1/2(Thr202/Tyr204), activating mutations of PIK3CA and inactivating mutations of PTEN may predict response to everolimus in breast cancer cells; these findings have potential applications for treatment personalization of everolimus in breast cancer patients.
2018
Citi, Valentina; Del Re, Marzia; Martelli, Alma; Calderone, Vincenzo; Breschi, Maria Cristina; Danesi, Romano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/912881
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact