We present recent developments in the symmetry implementation of the Polarizable Continuum Model (PCM). The structure of the matrix, which defines the PCM solvent response, is examined, and we demonstrate how this matrix can be transformed to a block diagonal form where each block belongs to different irreducible representations of the molecular point group. This development is especially important at the Multi-configurational Self-Consistent Field (MCSCF) level where symmetry is needed to avoid problems with symmetry breaking in the wave function and facilitate the optimization of electronic excited states. Moreover, although only the totally symmetric part of the solvent interaction is needed for energy calculations, in response or perturbation theory calculations of molecular properties, other irreps play an important role and the classification of solvent interaction terms by irrep is, therefore, desirable. In addition, the use of symmetry reduces the computational cost. The implementation presented here is illustrated with a series of calculations of absorption and emission processes in solution on the diazines pyrazine, pyrimidine, and pyridazine. These calculations allow us to illustrate both formal aspects of the implementation such as the choice of active spaces based on orbital symmetry as well as practical aspects such as the speed-up of the calculation. (C) 2003 Wiley Periodicals, Inc.

New developments in the symmetry-adapted algorithm of the polarizable continuum model RID A-1614-2009 RID E-4986-2010 RID A-9103-2008

POMELLI, CHRISTIAN SILVIO;
2004-01-01

Abstract

We present recent developments in the symmetry implementation of the Polarizable Continuum Model (PCM). The structure of the matrix, which defines the PCM solvent response, is examined, and we demonstrate how this matrix can be transformed to a block diagonal form where each block belongs to different irreducible representations of the molecular point group. This development is especially important at the Multi-configurational Self-Consistent Field (MCSCF) level where symmetry is needed to avoid problems with symmetry breaking in the wave function and facilitate the optimization of electronic excited states. Moreover, although only the totally symmetric part of the solvent interaction is needed for energy calculations, in response or perturbation theory calculations of molecular properties, other irreps play an important role and the classification of solvent interaction terms by irrep is, therefore, desirable. In addition, the use of symmetry reduces the computational cost. The implementation presented here is illustrated with a series of calculations of absorption and emission processes in solution on the diazines pyrazine, pyrimidine, and pyridazine. These calculations allow us to illustrate both formal aspects of the implementation such as the choice of active spaces based on orbital symmetry as well as practical aspects such as the speed-up of the calculation. (C) 2003 Wiley Periodicals, Inc.
2004
Frediani, L; Cammi, R; Pomelli, CHRISTIAN SILVIO; Tomasi, J; Ruud, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/91449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact