The antitumor activity of vandetanib [a multiple signal transduction inhibitor including the RET tyrosine kinase, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor (VEGFR), ERK and with antiangiogenic activity], in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C [undifferentiated thyroid cancer (TC)] and in an ATC‑cell line (AF), was investigated in the present study. Vandetanib (1 and 100 nM; 1, 10, 25 and 50 µM) was tested by WST‑1, apoptosis, migration and invasion assays: in primary ATC cells, in the 8305C continuous cell line, and in AF cells; and in 8305C cells in CD nu/nu mice. Vandetanib significantly reduced ATC cell proliferation (P<0.01, ANOVA), induced apoptosis dose‑dependently (P<0.001, ANOVA), and inhibited migration (P<0.01) and invasion (P<0.001). Furthermore, vandetanib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in ATC cells. In 8305C and AF cells, vandetanib significantly inhibited the proliferation, inducing also apoptosis. 8305C cells were injected subcutaneously in CD nu/nu mice and tumor masses became detectable after 30 days. Vandetanib (25 mg/kg/day) significantly inhibited tumor growth and VEGF‑A expression and microvessel density in 8305C tumor tissues. In conclusion, the antitumor and antiangiogenic activity of vandetanib is very auspicious in ATC, opening the way to a future clinical evaluation.
Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo
Ferrari, Silvia MartinaPrimo
;Bocci, GuidoSecondo
;Di Desidero, Teresa;Ruffilli, Ilaria;Elia, Giusy;Ragusa, Francesca;Fioravanti, Anna;Orlandi, Paola;Patrizio, Armando;Piaggi, Simona;La Motta, Concettina;Materazzi, Gabriele;Miccoli, Paolo;Antonelli, Alessandro
Penultimo
;Fallahi, PoupakUltimo
2018-01-01
Abstract
The antitumor activity of vandetanib [a multiple signal transduction inhibitor including the RET tyrosine kinase, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor (VEGFR), ERK and with antiangiogenic activity], in primary anaplastic thyroid cancer (ATC) cells, in the human cell line 8305C [undifferentiated thyroid cancer (TC)] and in an ATC‑cell line (AF), was investigated in the present study. Vandetanib (1 and 100 nM; 1, 10, 25 and 50 µM) was tested by WST‑1, apoptosis, migration and invasion assays: in primary ATC cells, in the 8305C continuous cell line, and in AF cells; and in 8305C cells in CD nu/nu mice. Vandetanib significantly reduced ATC cell proliferation (P<0.01, ANOVA), induced apoptosis dose‑dependently (P<0.001, ANOVA), and inhibited migration (P<0.01) and invasion (P<0.001). Furthermore, vandetanib inhibited EGFR, AKT and ERK1/2 phosphorylation and downregulated cyclin D1 in ATC cells. In 8305C and AF cells, vandetanib significantly inhibited the proliferation, inducing also apoptosis. 8305C cells were injected subcutaneously in CD nu/nu mice and tumor masses became detectable after 30 days. Vandetanib (25 mg/kg/day) significantly inhibited tumor growth and VEGF‑A expression and microvessel density in 8305C tumor tissues. In conclusion, the antitumor and antiangiogenic activity of vandetanib is very auspicious in ATC, opening the way to a future clinical evaluation.File | Dimensione | Formato | |
---|---|---|---|
Ferrari2018_Oncol Report_Vandetanib.pdf
Open Access dal 27/09/2018
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
667.61 kB
Formato
Adobe PDF
|
667.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.