This article deals with the development and performance characterisation of model-based health monitoring algorithms for the detection of faults in an electromechanical actuator for unmanned aerial system flight controls. Two real-time executable position-tracking algorithms, based on predictors with different levels of complexity, are developed and compared in terms of false alarm rejection and fault detection capabilities, using a high-fidelity model of the actuator in which different types of faults are injected. The algorithms’ performances are evaluated by simulating flight manoeuvres with the actuator in normal operation as well as with relevant faults (motor coil faults, motor magnet degradation, voltage supply decrease). The results demonstrate that an accurate position-tracking monitor allows to obtain a prompt fault detection and fail-safe mode engagement, while more detailed monitoring functions can be used for fault isolation only

Health monitoring of electromechanical flight actuators via position-tracking predictive models

Di Rito, Gianpietro
Primo
Writing – Original Draft Preparation
;
Schettini, Francesco
2018-01-01

Abstract

This article deals with the development and performance characterisation of model-based health monitoring algorithms for the detection of faults in an electromechanical actuator for unmanned aerial system flight controls. Two real-time executable position-tracking algorithms, based on predictors with different levels of complexity, are developed and compared in terms of false alarm rejection and fault detection capabilities, using a high-fidelity model of the actuator in which different types of faults are injected. The algorithms’ performances are evaluated by simulating flight manoeuvres with the actuator in normal operation as well as with relevant faults (motor coil faults, motor magnet degradation, voltage supply decrease). The results demonstrate that an accurate position-tracking monitor allows to obtain a prompt fault detection and fail-safe mode engagement, while more detailed monitoring functions can be used for fault isolation only
2018
Di Rito, Gianpietro; Schettini, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/920802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact