In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.
Decay of Correlations, Quantitative Recurrence and Logarithm Law for Contracting Lorenz Attractors
Galatolo, Stefano;
2018-01-01
Abstract
In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Rovella.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
575.63 kB
Formato
Adobe PDF
|
575.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.