We show that the number of solutions of a double singularly perturbed Schrödinger Maxwell system on a smooth bounded domainA in R3 depends on the topological properties of the domain. In particular if A is non contractible we obtain cat(A)+1 positive solutions. The result is obtained via Lusternik–Schnirelmann category theory.
Positive solutions for double singularly perturbed Schrödinger Maxwell systems
Ghimenti, Marco
;Micheletti, Anna Maria
2018-01-01
Abstract
We show that the number of solutions of a double singularly perturbed Schrödinger Maxwell system on a smooth bounded domainA in R3 depends on the topological properties of the domain. In particular if A is non contractible we obtain cat(A)+1 positive solutions. The result is obtained via Lusternik–Schnirelmann category theory.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.