The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young’s modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. [Figure not available: see fulltext.].

3D fiber deposited polymeric scaffolds for external auditory canal wall

Milazzo, Mario;Bruschini, Luca;Berrettini, Stefano
Penultimo
;
Danti, Serena
Ultimo
2018-01-01

Abstract

The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young’s modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. [Figure not available: see fulltext.].
2018
Mota, Carlos; Milazzo, Mario; Panetta, Daniele; Trombi, Luisa; Gramigna, Vera; Salvadori, Piero A.; Giannotti, Stefano; Bruschini, Luca; Stefanini, Cesare; Moroni, Lorenzo; Berrettini, Stefano; Danti, Serena
File in questo prodotto:
File Dimensione Formato  
Mota2018_Article_3DFiberDepositedPolymericScaff.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.91 MB
Formato Adobe PDF
8.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/923212
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact