Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that have shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.
Does metronomic chemotherapy induce tumor angiogenic dormancy? A review of available preclinical and clinical data
Natale, GianfrancoPrimo
;Bocci, Guido
Ultimo
2018-01-01
Abstract
Tumor dormancy is the ability of cancer cells to survive in a non-proliferating state. This condition can depend on three main mechanisms: cell cycle arrest (quiescence or cell dormancy), immunosurveillance (immunologic dormancy), or lack of functional blood vessels (angiogenic dormancy). In particular, under angiogenic dormancy, cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization, impeding tumor mass expansion beyond a microscopic size, with an asymptomatic and non-metastatic state. Tumor vasculogenic or non-angiogenic switch is essential to promote escape from tumor dormancy, leading to tumor mass proliferation and metastasis. In avascular lesions angiogenesis process results blocked from the equilibrium between pro- and anti-angiogenic factors, such as vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1), respectively. The angiogenic switch mainly depends on the disruption of this balance, in favor of pro-angiogenic factors, and on the recruitment of circulating endothelial progenitors (CEPs) that promote the formation of new blood vessels. Metronomic chemotherapy, the regular intake of doses able to sustain low but active concentrations of chemotherapeutic drugs during protracted time periods, is an encouraging therapeutic approach that have shown to upregulate anti-angiogenic factors such as TSP-1 and decline pro-angiogenic factors such as VEGF, suppressing the proangiogenic cells such as CEPs. In this perspective, metronomic chemotherapy may be one of the available therapeutic approaches capable to modulate favorably the angiogenic tumor dormancy, but further research is essential to better define this particular characteristic.File | Dimensione | Formato | |
---|---|---|---|
Natale 2018_Cancer Letters.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
819.81 kB
Formato
Adobe PDF
|
819.81 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
pre-print.pdf
accesso aperto
Descrizione: pre-print
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
351.76 kB
Formato
Adobe PDF
|
351.76 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.