In settings wherein discussion topics are not statically assigned, such as in microblogs, a need exists for identifying and separating topics of a given event. We approach the problem by using a novel type of similarity, calculated between the major terms used in posts. The occurrences of such terms are periodically sampled from the posts stream. The generated temporal series are processed by using marker-based stigmergy, i.e., a biologically-inspired mechanism performing scalar and temporal information aggregation. More precisely, each sample of the series generates a functional structure, called mark, associated with some concentration. The concentrations disperse in a scalar space and evaporate over time. Multiple deposits, when samples are close in terms of instants of time and values, aggregate in a trail and then persist longer than an isolated mark. To measure similarity between time series, the Jaccard’s similarity coefficient between trails is calculated. Discussion topics are generated by such similarity measure in a clustering process using Self-Organizing Maps, and are represented via a colored term cloud. Structural parameters are correctly tuned via an adaptation mechanism based on Differential Evolution. Experiments are completed for a real-world scenario, and the resulting similarity is compared with Dynamic Time Warping (DTW) similarity.

Using Stigmergy to Distinguish Event-Specific Topics in Social Discussions

Mario G. C. A. Cimino
;
Alessandro Lazzeri;Gigliola Vaglini
2018-01-01

Abstract

In settings wherein discussion topics are not statically assigned, such as in microblogs, a need exists for identifying and separating topics of a given event. We approach the problem by using a novel type of similarity, calculated between the major terms used in posts. The occurrences of such terms are periodically sampled from the posts stream. The generated temporal series are processed by using marker-based stigmergy, i.e., a biologically-inspired mechanism performing scalar and temporal information aggregation. More precisely, each sample of the series generates a functional structure, called mark, associated with some concentration. The concentrations disperse in a scalar space and evaporate over time. Multiple deposits, when samples are close in terms of instants of time and values, aggregate in a trail and then persist longer than an isolated mark. To measure similarity between time series, the Jaccard’s similarity coefficient between trails is calculated. Discussion topics are generated by such similarity measure in a clustering process using Self-Organizing Maps, and are represented via a colored term cloud. Structural parameters are correctly tuned via an adaptation mechanism based on Differential Evolution. Experiments are completed for a real-world scenario, and the resulting similarity is compared with Dynamic Time Warping (DTW) similarity.
2018
Cimino, Mario G. C. A.; Lazzeri, Alessandro; Pedrycz, Witold; Vaglini, Gigliola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/924740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact