Human communication relies mostly on nonverbal signals expressed through body language. Facial expressions, in particular, convey emotional information that allows people involved in social interactions to mutually judge the emotional states and to adjust its behavior appropriately. First studies aimed at investigating the recognition of facial expressions were based on static stimuli. However, facial expressions are rarely static, especially in everyday social interactions. Therefore, it has been hypothesized that the dynamics inherent in a facial expression could be fundamental in understanding its meaning. In addition, it has been demonstrated that nonlinguistic and linguistic information can contribute to reinforce the meaning of a facial expression making it easier to be recognized. Nevertheless, few studies have been performed on realistic humanoid robots. This experimental work aimed at demonstrating the human-like expressive capability of a humanoid robot by examining whether the effect of motion and vocal content influenced the perception of its facial expressions. The first part of the experiment aimed at studying the recognition capability of two kinds of stimuli related to the six basic expressions (i.e. anger, disgust, fear, happiness, sadness, and surprise): static stimuli, that is, photographs, and dynamic stimuli, that is, video recordings. The second and third parts were focused on comparing the same six basic expressions performed by a virtual avatar and by a physical robot under three different conditions: (1) muted facial expressions, (2) facial expressions with nonlinguistic vocalizations, and (3) facial expressions with an emotionally neutral verbal sentence. The results show that static stimuli performed by a human being and by the robot were more ambiguous than the corresponding dynamic stimuli on which motion and vocalization were associated. This hypothesis has been also investigated with a 3-dimensional replica of the physical robot demonstrating that even in case of a virtual avatar, dynamic and vocalization improve the emotional conveying capability.

The influence of dynamics and speech on understanding humanoid facial expressions

Lazzeri, Nicole
Software
;
Mazzei, Daniele
Conceptualization
;
De Rossi, Danilo
Supervision
2018-01-01

Abstract

Human communication relies mostly on nonverbal signals expressed through body language. Facial expressions, in particular, convey emotional information that allows people involved in social interactions to mutually judge the emotional states and to adjust its behavior appropriately. First studies aimed at investigating the recognition of facial expressions were based on static stimuli. However, facial expressions are rarely static, especially in everyday social interactions. Therefore, it has been hypothesized that the dynamics inherent in a facial expression could be fundamental in understanding its meaning. In addition, it has been demonstrated that nonlinguistic and linguistic information can contribute to reinforce the meaning of a facial expression making it easier to be recognized. Nevertheless, few studies have been performed on realistic humanoid robots. This experimental work aimed at demonstrating the human-like expressive capability of a humanoid robot by examining whether the effect of motion and vocal content influenced the perception of its facial expressions. The first part of the experiment aimed at studying the recognition capability of two kinds of stimuli related to the six basic expressions (i.e. anger, disgust, fear, happiness, sadness, and surprise): static stimuli, that is, photographs, and dynamic stimuli, that is, video recordings. The second and third parts were focused on comparing the same six basic expressions performed by a virtual avatar and by a physical robot under three different conditions: (1) muted facial expressions, (2) facial expressions with nonlinguistic vocalizations, and (3) facial expressions with an emotionally neutral verbal sentence. The results show that static stimuli performed by a human being and by the robot were more ambiguous than the corresponding dynamic stimuli on which motion and vocalization were associated. This hypothesis has been also investigated with a 3-dimensional replica of the physical robot demonstrating that even in case of a virtual avatar, dynamic and vocalization improve the emotional conveying capability.
2018
Lazzeri, Nicole; Mazzei, Daniele; Ben Moussa, Maher; Magnenat-Thalmann, Nadia; De Rossi, Danilo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/924793
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact