Let $\mathcalE$ be an elliptic curve, $m$ a positive number and $\E[m]$ the $m$-torsion subgroup of $\mathcalE$. Let $P_1=(x_1,y_1)$, $P_2=(x_2,y_2)$ form a basis of $\E[m]$. We prove that $\mathbbQ(\E[m])=\mathbbQ(x_1\,,x_2\,,\zeta_m\,,y_1)$ in general. For the case $m=3$ we provide a description of all the possible extensions $\mathbbQ(\E[3])$ in terms of generators, degree and Galois groups.

Number fields generated by the 3-torsion points of an elliptic curve

A. Bandini;
2012-01-01

Abstract

Let $\mathcalE$ be an elliptic curve, $m$ a positive number and $\E[m]$ the $m$-torsion subgroup of $\mathcalE$. Let $P_1=(x_1,y_1)$, $P_2=(x_2,y_2)$ form a basis of $\E[m]$. We prove that $\mathbbQ(\E[m])=\mathbbQ(x_1\,,x_2\,,\zeta_m\,,y_1)$ in general. For the case $m=3$ we provide a description of all the possible extensions $\mathbbQ(\E[3])$ in terms of generators, degree and Galois groups.
2012
Bandini, A.; Paladino, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/925064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact