Let F be a function field of characteristic p>0, \mathcalF/F a \mathbbZ_l^d-extension (for some prime l\neq p) and E/F a non-isotrivial elliptic curve. We study the behaviour of the r-parts of the Selmer groups ( r any prime) in the subextensions of \mathcalF via appropriate versions of Mazur's Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of \mathcalF/F.

Selmer groups for elliptic curves in Z_l^d-extensions of function fields of characteristic p

A. Bandini;
2009-01-01

Abstract

Let F be a function field of characteristic p>0, \mathcalF/F a \mathbbZ_l^d-extension (for some prime l\neq p) and E/F a non-isotrivial elliptic curve. We study the behaviour of the r-parts of the Selmer groups ( r any prime) in the subextensions of \mathcalF via appropriate versions of Mazur's Control Theorem. As a consequence we prove that the limit of the Selmer groups is a cofinitely generated (in some cases cotorsion) module over the Iwasawa algebra of \mathcalF/F.
2009
Bandini, A.; Longhi, I.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/925094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact