For large-scale image reconstruction problems, the iterative regularization methods can be favorable alternatives to the direct methods. We analyze preconditioners for regularizing gradient-type iterations applied to problems with 2D band Toeplitz coefficient matrix. For problems having separable and positive definite matrices, the fit preconditioner we have introduced in a previous paper has been shown to be effective in conjunction with CG. The cost of this preconditioner is of O(n^2) operations per iteration, where n^2 is the pixels number of the image, whereas the cost of the circulant preconditioners commonly used for this type of problems is of O(n^2 log n) operations per iteration. In this paper the extension of the fit preconditioner to more general cases is proposed: namely the nonseparable positive definite case and the symmetric indefinite case. The major difficulty encountered in this extension concerns the factorization phase, where a further approximation is required. Three approximate factorizations are proposed. The preconditioners thus obtained have still a cost of O(n^2) operations per iteration. A numerical experimentation shows that the fit preconditioners Are competitive with the regularizing Chan preconditioner, both in the regularing efficiency and the computational cost.

Preconditioners based on fit techniques for the iterative regularization in the image deconvolution problem

MENCHI, ORNELLA
2005-01-01

Abstract

For large-scale image reconstruction problems, the iterative regularization methods can be favorable alternatives to the direct methods. We analyze preconditioners for regularizing gradient-type iterations applied to problems with 2D band Toeplitz coefficient matrix. For problems having separable and positive definite matrices, the fit preconditioner we have introduced in a previous paper has been shown to be effective in conjunction with CG. The cost of this preconditioner is of O(n^2) operations per iteration, where n^2 is the pixels number of the image, whereas the cost of the circulant preconditioners commonly used for this type of problems is of O(n^2 log n) operations per iteration. In this paper the extension of the fit preconditioner to more general cases is proposed: namely the nonseparable positive definite case and the symmetric indefinite case. The major difficulty encountered in this extension concerns the factorization phase, where a further approximation is required. Three approximate factorizations are proposed. The preconditioners thus obtained have still a cost of O(n^2) operations per iteration. A numerical experimentation shows that the fit preconditioners Are competitive with the regularizing Chan preconditioner, both in the regularing efficiency and the computational cost.
2005
Favati, P; Lotti, G; Menchi, Ornella
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/92644
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact