We qualify a relevant range of fractional powers of the so-called Hamiltonian of point interaction in three dimensions, namely the singular perturbation of the negative Laplacian with a contact interaction supported at the origin. In particular we provide an explicit control of the domain of such a fractional operator and of its decomposition into regular and singular parts. We also qualify the norms of the resulting singular fractional Sobolev spaces and their mutual control with the corresponding classical Sobolev norms.
Autori interni: | |
Autori: | Gueorguiev, Vladimir; Alessandro, Michelangeli; Scandone, Raffaele |
Titolo: | On fractional powers of singular perturbations of the Laplacian |
Anno del prodotto: | 2018 |
Abstract: | We qualify a relevant range of fractional powers of the so-called Hamiltonian of point interaction in three dimensions, namely the singular perturbation of the negative Laplacian with a contact interaction supported at the origin. In particular we provide an explicit control of the domain of such a fractional operator and of its decomposition into regular and singular parts. We also qualify the norms of the resulting singular fractional Sobolev spaces and their mutual control with the corresponding classical Sobolev norms. |
Digital Object Identifier (DOI): | 10.1016/j.jfa.2018.03.007 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
offprintJFA2018.pdf | Versione finale editoriale | NON PUBBLICO - Accesso privato/ristretto | Utenti riconosciuti Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.