Coronary (CAD) and peripheral (PAD) artery diseases are major causes of morbidity and mortality, and millions of CAD and PAD patients are treated by various medications, bypass surgery or angioplasty around the world. Such patients might benefit from novel stem cells and tissue engineering strategies aimed at accelerating natural processes of postnatal collateral vessel formation and repairing damaged tissues. By combining three fundamental " tools" , namely stem cells, biomaterials and growth factors (GFs), such strategies may enhance the efficacy of cell therapy in several ways: (a) by supplying exogenous stem cells or GFs that stimulate resident cardiac stem cell (CSC) migration, engraftment and commitment to cardiomyocytes, and that induce and modulate arterial response to ischemia; (b) by supporting the maintenance of GFs and transplanted stem cells in the damaged tissues through the use of biocompatible and biodegradable polymers for a period of time sufficient to allow histological and anatomical restoration of the damaged tissue. This review will discuss the potential of combining stem cells and new delivery systems for growth factors, such as vehicle-based delivery strategies or cell-based gene therapy, to facilitate regeneration of ischemic tissues. These approaches would promote the ability of resident CSCs or of exogenous multipotent stem cells such as adipose tissue-derived mesenchymal stem cells (AT-MSCs) to induce the healing of damaged tissue, by recruiting and directing these cells into the damage area and by improving angiogenesis and reperfusion of ischemic tissues. © 2011 Elsevier B.V.

Stem cells and growth factor delivery systems for cardiovascular disease

Madonna R.;De Caterina R.
2011-01-01

Abstract

Coronary (CAD) and peripheral (PAD) artery diseases are major causes of morbidity and mortality, and millions of CAD and PAD patients are treated by various medications, bypass surgery or angioplasty around the world. Such patients might benefit from novel stem cells and tissue engineering strategies aimed at accelerating natural processes of postnatal collateral vessel formation and repairing damaged tissues. By combining three fundamental " tools" , namely stem cells, biomaterials and growth factors (GFs), such strategies may enhance the efficacy of cell therapy in several ways: (a) by supplying exogenous stem cells or GFs that stimulate resident cardiac stem cell (CSC) migration, engraftment and commitment to cardiomyocytes, and that induce and modulate arterial response to ischemia; (b) by supporting the maintenance of GFs and transplanted stem cells in the damaged tissues through the use of biocompatible and biodegradable polymers for a period of time sufficient to allow histological and anatomical restoration of the damaged tissue. This review will discuss the potential of combining stem cells and new delivery systems for growth factors, such as vehicle-based delivery strategies or cell-based gene therapy, to facilitate regeneration of ischemic tissues. These approaches would promote the ability of resident CSCs or of exogenous multipotent stem cells such as adipose tissue-derived mesenchymal stem cells (AT-MSCs) to induce the healing of damaged tissue, by recruiting and directing these cells into the damage area and by improving angiogenesis and reperfusion of ischemic tissues. © 2011 Elsevier B.V.
2011
Madonna, R.; De Caterina, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/929590
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact