Diabetes-induced micro- and macrovascular complications are the major causes of morbidity and mortality in diabetic patients. While hyperglycemia is a key factor for the pathogenesis of diabetic microvascular complications, it is only one of the multiple factors capable of increasing the risk of macrovascular complications.Hyperglycemia induces vascular damage probably through a single common pathway - increased intracellular oxidative stress - linking four major mechanisms, namely the polyol pathway, advanced glycation end-products (AGEs) formation, the protein kinase C (PKC)-diacylglycerol (DAG) and the hexosamine pathways. In addition, in conditions of insulin resistance, i.e., preceding the onset of type 2 diabetes, the phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway is selectively inhibited, while the mitogen activated protein (MAP)-kinase pathway remains largely unaffected, thus allowing compensatory hyperinsulinemia to elicit pro-atherogenic events in vascular smooth muscle and endothelial cells, including increased cell proliferation, and the expression of plasminogen activator inhibitor-1, as well as of proinflammatory cytokines and endothelial adhesion molecules. © 2011 Elsevier Inc.

Cellular and molecular mechanisms of vascular injury in diabetes - Part I: pathways of vascular disease in diabetes

Madonna R;De Caterina R
2011-01-01

Abstract

Diabetes-induced micro- and macrovascular complications are the major causes of morbidity and mortality in diabetic patients. While hyperglycemia is a key factor for the pathogenesis of diabetic microvascular complications, it is only one of the multiple factors capable of increasing the risk of macrovascular complications.Hyperglycemia induces vascular damage probably through a single common pathway - increased intracellular oxidative stress - linking four major mechanisms, namely the polyol pathway, advanced glycation end-products (AGEs) formation, the protein kinase C (PKC)-diacylglycerol (DAG) and the hexosamine pathways. In addition, in conditions of insulin resistance, i.e., preceding the onset of type 2 diabetes, the phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway is selectively inhibited, while the mitogen activated protein (MAP)-kinase pathway remains largely unaffected, thus allowing compensatory hyperinsulinemia to elicit pro-atherogenic events in vascular smooth muscle and endothelial cells, including increased cell proliferation, and the expression of plasminogen activator inhibitor-1, as well as of proinflammatory cytokines and endothelial adhesion molecules. © 2011 Elsevier Inc.
2011
Madonna, R; De Caterina, R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/929660
Citazioni
  • ???jsp.display-item.citation.pmc??? 47
  • Scopus 132
  • ???jsp.display-item.citation.isi??? ND
social impact