Background: We tested the hypothesis that glucose-induced hyperosmolarity, occurring in diabetic hyperglycemia, promotes retinal angiogenesis, and that interference with osmolarity signaling ameliorates excessive angiogenesis and retinopathy in vitro and in vivo. Methods and Results: We incubated human aortic (HAECs) and dermal microvascular endothelial cells (HMVECs) with glucose or mannitol for 24 h and tested them for protein levels and in vitro angiogenesis. We used the Ins2 Akita mice as a model of type 1 diabetes to test the in vivo relevance of in vitro observations. Compared to incubations with normal (5 mmol/L) glucose concentrations, cells exposed to both high glucose and high mannitol (at 30.5 or 50.5 mmol/L) increased expression of the water channel aquaporin-1 (AQP1) and cyclooxygenase (COX)-2. This was preceded by increased activity of the osmolarity-sensitive transcription factor Tonicity enhancer binding protein (TonEBP), and enhanced endothelial migration and tubulization in Matrigel, reverted by treatment with AQP1 and TonEBP siRNA. Retinas of Ins2 Akita mice showed increased levels of AQP1 and COX-2, as well as angiogenesis, all reverted by AQP1 siRNA intravitreal injections. Conclusions: Glucose-related hyperosmolarity seems to be able to promote angiogenesis and retinopathy through activation of TonEBP and possibly increasing expression of AQP1 and COX-2. Osmolarity signaling may be a target for therapy.

High glucose-induced hyperosmolarity contributes to COX-2 expression and angiogenesis: Implications for diabetic retinopathy

Madonna R;De Caterina R
2016-01-01

Abstract

Background: We tested the hypothesis that glucose-induced hyperosmolarity, occurring in diabetic hyperglycemia, promotes retinal angiogenesis, and that interference with osmolarity signaling ameliorates excessive angiogenesis and retinopathy in vitro and in vivo. Methods and Results: We incubated human aortic (HAECs) and dermal microvascular endothelial cells (HMVECs) with glucose or mannitol for 24 h and tested them for protein levels and in vitro angiogenesis. We used the Ins2 Akita mice as a model of type 1 diabetes to test the in vivo relevance of in vitro observations. Compared to incubations with normal (5 mmol/L) glucose concentrations, cells exposed to both high glucose and high mannitol (at 30.5 or 50.5 mmol/L) increased expression of the water channel aquaporin-1 (AQP1) and cyclooxygenase (COX)-2. This was preceded by increased activity of the osmolarity-sensitive transcription factor Tonicity enhancer binding protein (TonEBP), and enhanced endothelial migration and tubulization in Matrigel, reverted by treatment with AQP1 and TonEBP siRNA. Retinas of Ins2 Akita mice showed increased levels of AQP1 and COX-2, as well as angiogenesis, all reverted by AQP1 siRNA intravitreal injections. Conclusions: Glucose-related hyperosmolarity seems to be able to promote angiogenesis and retinopathy through activation of TonEBP and possibly increasing expression of AQP1 and COX-2. Osmolarity signaling may be a target for therapy.
2016
Madonna, R; Giovannelli, G; Confalone, P; Renna, Fv; Geng, Y-J; De Caterina, R
File in questo prodotto:
File Dimensione Formato  
s12933-016-0342-4.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/929670
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 78
social impact